

DATASHEET

Ambient Light Sensor and Proximity Sensor with I²C Interface APM-16D24-310-DF8/TR8

Features

Ambient Light Sensor

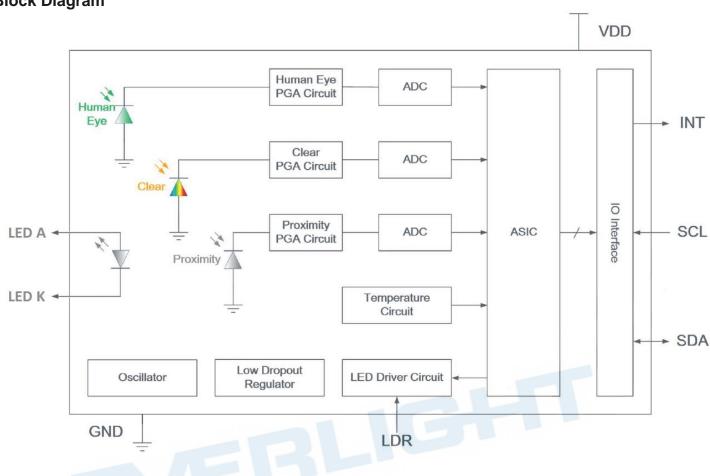
- 10~16bit ADC resolution
- Specially coated photo diode with an optical response similar to human eyes
- High resolution (0.0023Lux/count)
- 50Hz/60Hz flicker noise and IR rejection
- Amplifier with adjustable gain (x1, x4, x8, x32, x96)
- · Individual programmable low and high threshold for interrupt function
- · Programmable integration time

Proximity Sensor

- 8~12bit ADC resolution
- · Specially coated photo diode with a narrow optical response in a specified infrared range
- Amplifier with adjustable gain (x1, x2, x4, x8)
- IR driver output with adjustable sink current up to 200mA
- Adjustable number of pulse for the IR proximity signal
- Individual programmable low and high threshold for interrupt function
- · Programmable update/sleep time
- · Current sink driver for IR LED
- Cross-talk cancellation register
- The product itself will remain within RoHS compliant version
- · Compliance with EU REACH
- Compliance Halogen Free(Br < 900ppm, Cl < 900ppm, Br+Cl < 1500ppm)

Description

The APM-16D24-310-DF8/TR8 is a digital output ambient light and proximity senor with I²C interface and interrupt. It has a flexible and wide operating range for the ambient light sensor with a maximum resolution of 0.0023Lux/count and a maximum detectable illumination of 57880Lux. The PS function has adjustable number of IR pulses from 1 to 256 and flexible IR LED driving current from 50mA to 200mA, to meet different application requirements. Furthermore it is equipped with a filter to reduce unwanted IR signals and noise comes from the environment.


Applications

- Detection of ambient for controlling the backlight of TFT LCD display.
- Automatic residential and commercial lighting management.
- Automatic contrast enhancement for electronic signboard.
- Mobile phone, Smart phone, PDA, Tablet PC.

Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply Voltage	VDD	4.5	V
I ² C Bus Pin Voltage	SCL, SDA, INT	-0.2 to 4.5	V
I ² C Bus Pin Current	SCL, SDA, INT	10	mA
IRDR Pin Voltage	V _{IRDR}	-0.2V to VDD + 0.5V	V
Operating Temperature	T _{ope}	-40 to +85	℃
Storage Temperature	T _{stg}	-45 ~ 100	℃
ESD Rating	Human Body Model	2	KV

Note:

Exceeding these ratings could cause damage to the device. All voltages are with respect to ground. Currents are positive into, negative out of the specified terminal.

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Supply Voltage Note1	V _{DD}	2.4	-	3.6	V	
I ² C Bus Pin Voltage	V_{Bus}	1.62	1.8	V_{DD}	V	V _{Bus} ≤V _{DD}
Operating Temperature	T _{ope}	-40	-	+85	°C	
12C Due Japant High Voltage Note?	V _{IH_SCL} ,	1.4			V	
I ² C Bus Input High Voltage ^{Note2}	VIH_SDA	1.4	<u>-</u>	-		
12C Dura Inmut I au Valta na Note?	VIL_SCL,	_		0.5	V	
I ² C Bus Input Low Voltage ^{Note2}	V_{IL_SDA}	_	-	0.5		
SDA Output Low Voltage	Vol_sda	0	-	0.4	V	3mA sinking current
INT Output Low Voltage	V_{OL_INT}	0	-	0.4	V	3mA sinking current

Notes:

- 1.The power supply need to make sure the VDD slew rate at least 1.0V/ms. APM-16D24-310 have power on reset function. When VDD drops below 2.0V under room temp, the IC will be reset automatically. Then power back up at the requirement slew rate, and write registers to the desired values.
- 2. The specs are defined under VDD=3.3V, T=25°C

Electro-Optical Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
	I _{DD}	-	260	-	μA	E _v =0 Ix Note1
Active Supply Current Note1	I _{PD}	-	2.5	-	μΑ	Sleep mode E _v = 0 lx I ² C inactive
Ambient Light Sensor	Symbol	Min.	Тур.	Max.	Unit	Condition
ALS A/DC resolution	-	10	-	16	bit	
Number of ADC integration time	ATIME	1	-	256	step	
ALS Dark Output	CH0 CH1	-	1 1	5 5	counts	$E_v=0$ lx, ALS gain=x96, Tint =674ms
ALS detection output	CH0 CH1	-	3340 4360	-	counts	E _v =100 lx, ALS gain=x32, Tint =170ms
ALS detection resolution	-	-	0.0023	-	lx/count	ALS gain=x96,Tint=674ms
ALS maximum detection	-	-	57K		Lux	ALS gain=x1,Tint=5.5ms
ALS sensitivity peak wavelength	λ _{PALS}		550	C	nm	

Proximity Sensor	Symbol	Min.	Тур.	Max.	Unit	Condition
PS A/DC resolution		8	-	12	bit	
Number of ADC integration time	PTIME	1	-	16	step	
PS output	-	-	2400	-	count	PS_TIME=12bit, PS Gain=8x LED Current=50mA, LED Pulse width=6T, LED Pulse count=3, IC-Gary card distance=3cm
PS sensitivity peak wavelength	λ _{PPS}	-	940	-	nm	
Sensitivity wavelength range	λ _{PS}	800	-	1,000	nm	

LED Sink Current Driver	Symbol	Min.	Тур.	Max.	Unit	Condition	
LED Driving Current	I _{LED}	50	-	200	mA		
LED pulse width	T _{LEDW}	1	-	64	Т		
LED pulse count	P _{count}	1	-	256	pulse		

Note:

^{1.} VDD = 3.3 V, TA = 25C, **EN_ALS**=1, **ALSCONV**=0x3F, **PGA_ALS** =0x04, **EN_PS**=1, **LED_CTRL**=0x05,

PS_GAIN=0x03, PS_PULSE=0x02, PS_TIME=0x0F, WTIME=0x07

I2C Write Format

	Slave Addr	\\/	۸	Reg Addr	۸	Data	٨	D
3	7 Bit		А	8 Bit	A	8 Bit	A	

I2C Block Write Format

	Slave Addr	W	٨	Reg Addr	_	Data	_	Λ	Data		D
3	7 Bit	VV	A	8 Bit	A	8 Bit	A	 А	8 Bit	A	۲

I2C Read Format

C	Slave Addr	w	٨	Reg Addr	Λ	C	Slave Addr	Ъ	٨	Data	NI	П
3	7 Bit	VV	Α	8 Bit	A	7	7 Bit	ת	A	8 Bit	N	۲

I2C Block Read Format

S	Slave Addr 7 Bit	WA	Reg Addr 8 Bit	А	S	Slave Addr 7 Bit	R	Α	Data 8 Bit	А		
							=		A Dat	a it	N P]

Master to Slave	S Start Condition, 1 Bit
Slave to Master	P Stop Condition, 1 Bit
	W Write, Set 0 for write, 1 Bit
	R Read, Set 1 for read, 1 Bit
	A Acknowledge(ACK), Set 0, 1 Bit
	N Non acknowledge(NACK), Set 1, 1 Bit

I2C Slave Address and R/W bit

This address is seven bits long followed by an eighth bit which is a data direction bit (R/W). A '0' indicates a transmission (WRITE), a '1' indicates a request for data (READ). The slave address of this device is 0x38.

Register Set

The APM-16D24-310 is operated over the I²C bus with registers that contain configuration, status, and result information. All registers are 8 bits long.

Address	Name	Туре	Default value	Description
0x00	SYSM_CTRL	RW	0x00	ALS/PS operation mode control, waiting mode control, SW reset
0x01	INT_CTRL	RW	0x03	Interrupt pin control, interrupt persist control
0x02	INT_FLAG	RW	0x00	Interrupt flag, error flag, power on reset(POR) flag
0x03	WAIT_TIME	RW	0x00	Waiting time setting
0x04	ALS_GAIN	RW	0x00	ALS analog gain setting
0x05	ALS_TIME	RW	0x00	ALS integrated time setting
0x06	LED_CTRL	RW	0x00	LED setting
0x07	PS_GAIN	RW	0x00	PS analog gain setting
0x08	PS_PULSE	RW	0x00	PS number of LED pulse
0x09	PS_TIME	RW	0x00	PS integrated time setting
0x0B	PERSISTENCE	RW	0x11	ALS/PS persistence setting
0x0C	ALS_THRES_LL	RW	0x00	ALS lower interrupt threshold - LSB
0x0D	ALS_THRES_LH	RW	0x00	ALS lower interrupt threshold - MSB
0x0E	ALS_THRES_HL	RW	0xFF	ALS higher interrupt threshold - LSB
0x0F	ALS_THRES_HH	RW	0xFF	ALS higher interrupt threshold - MSB
0x10	PS_THRES_LL	RW	0x00	PS lower interrupt threshold - LSB
0x11	PS_THRES_LH	RW	0x00	PS lower interrupt threshold - MSB
0x12	PS_THRES_HL	RW	0xFF	PS higher interrupt threshold - LSB
0x13	PS_THRES_HH	RW	0xFF	PS higher interrupt threshold - MSB
0x14	PS_OFFSET_L	RW	0x00	PS offset level - LSB
0x15	PS_OFFSET_H	RW	0x00	PS offset level - MSB
0x16	INT_SOURCE	RW	0x00	ALS interrupt source
0x17	ERROR_FLAG	RW	0x00	Error flag
0x18	PS_DATA_L	R	0x00	PS output data - LSB

0x19	PS_DATA_H	R	0x00	PS output data - MSB
0x1A	IR_DATA_L	R	0x00	IR output data - LSB
0x1B	IR_DATA_H	R	0x00	IR output data - MSB
0x1C	CH0_DATA_L	R	0x00	Channel 0 output data - LSB
0x1D	CH0_DATA_H	R	0x00	Channel 0 output data - MSB
0x1E	CH1_DATA_L	R	0x00	Channel 1 output data - LSB
0x1F	CH1_DATA_H	R	0x00	Channel 1 output data - MSB
0xBC	PNO_LB	R	0x14	Product number, Low Byte
0xBD	PNO_HB	R	0x16	Product number, High Byte

SYSM_CTRL

0x00		SYSM_CTRL, System Control (Default = 0x00)								
BIT	7	7 6 5 4 3 2 1 0								
R/W	SWRST	EN_WAIT	0	0	0	0	EN_PS	EN_ALS		

SWRST: Software reset. Reset all register to default value.

0: (default)

1: Reset will be triggered.

EN WAIT: Waiting time will be inserted between two measurements.

0: Disable waiting function (default).

1: Enable waiting function.

EN_PS: Enables PS function.

0: Disable PS function (default)

1: Enable PS function

EN_ALS: Enables ALS function.

0: Disable ALS function (default)

1: Enable ALS function

INT_CTRL

0x01		Interrupt Pin Control (Default = 0x03)								
BIT	7	6	5	4	3	2	1	0		
R/W	PS_INT_M ODE	SINT_ MODE	PS_ SYNC	ALS_ SYNC	0	0	EN_PINT	EN_AINT		

PS_INT_MODE: This bit selects the interrupt triggered mode of PS function.

- 0: Hysteresis Mode (default).
- 1: Zone Mode.

SINT MODE: Speeding up the interrupt response of PS mode by skipping waiting time in each conversion cycle.

- 0: Disable speed up (default).
- 1: Enable speed up.

PS_SYNC: Measurement is pended when PS interrupt is triggered. Until clear the interrupt then start the next measurement.

- 0: Disable pending PS function (default).
- 1: Enable pending PS function.

<u>ALS_SYNC</u>: Measurement is pended when ALS interrupt is triggered. Until clear the interrupt then start the next measurement.

- 0: Disable pending ALS function (default).
- 1: Enable pending ALS function.

EN_PINT: The PS interrupt (INT_PS) flag can trigger the INT pin to low.

- 0: Disable INT PS effect INT pin.
- 1: Enable INT_PS effect INT pin (default)

EN AINT: The ALS interrupt (INT_ALS) flag can trigger the INT pin to low.

- 0: Disable INT_ALS effect INT pin.
- 1: Enable INT_ALS effect INT pin (default)

INT FLAG

0x02		INT_FLAG, System Control (Default = 0x00)									
BIT	7	6	5	4	3	2	1	0			
R/W	INT_POR	DATA_FLA G	OBJ	0	0	0	INT_PS	INT_ALS			

INT_POR: Power-On-Reset Interrupt flag trigger the INT pin when the flag sets to one.

0: Write zero to clear the flag.

1: This bit will be set to one when it satisfy one of the following conditions:

- Power On
- VDD < 2.0V
- SWRST

DATA_FLAG: It shows if any data is invalid after completion of each conversion cycle. This bit is read-only.

0: data valid

1: data invalid

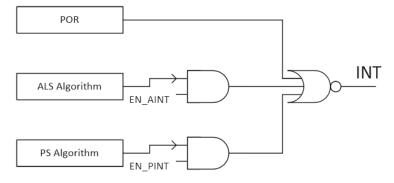
<u>OBJ</u>: Object Detection Bit. It shows the position of the object. It is a read-only bit. Refer to <u>PS_INT_MODE</u> (register 0x01, bit 7) for detailed definition of <u>OBJ</u>. This bit is read only.

0: object disappear.

1: object appear.

<u>INT PS</u>: PS Interrupt flag. It correlation with <u>PS INT MODE</u>, PS_DATA and PS high/low threshold. Write zero to clear the flag.

0: PS Interrupt not triggered or be cleared.


1: PS Interrupt triggered.

INT_ALS: ALS Interrupt flag. It correlation with CH0/1 data and ALS high/low threshold. Write zero to clear the flag.

0: ALS Interrupt not trigger or be cleared.

1: ALS Interrupt triggered

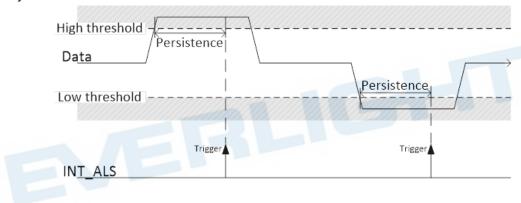
Interrupt Behavior:

ALS Interrupt Algorithm

Correlative register:

The ALS Interrupt (INT_ALS, register 0x02, bit0).

The ALS Persistence (PRS_ALS, register 0x0B, bit0 to bit3),


The ALS Data (CHO DATA and CH1 DATA, register 0x1C to 0x1F),

The ALS Low Threshold (ALS THRES L, register 0x0C to 0x0D),

The ALS High Threshold (<u>ALS_THRES_H</u>, register 0x0E to 0x0F).

INT ALS triggered condition:

- Rule of active interrupt: <u>DATA</u>><u>ALS_THRES_H</u> or <u>DATA</u><<u>ALS_THRES_L.</u>
- 2. If the **DATA** meets the rule, the **interrupt** count increases one. If the **DATA** fails in the rule, the interrupt count will be clear.
- 3. When the <u>interrupt</u> count equal to <u>PRS_ALS setting</u>, <u>INT_ALS</u> will be triggered and reset the interrupt counter.
- 4. If **PRS_ALS** is set to zero, **threshold** will be ignored and **DATA** will meets the active interrupt rule forcibly.

PS Interrupt Algorithm

Correlative register:

The PS Interrupt (INT PS, register 0x02, bit1),

The PS Persistence (**PRS_PS**, register 0x0B, bit4 to bit7),

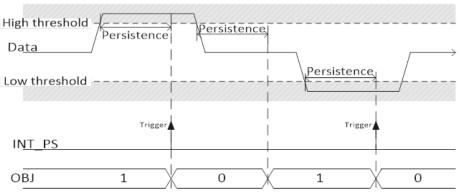
The PS Data (**PS_DATA**, register 0x18 to 0x19),

The PS Low Threshold (**PS_THRES_L**, register 0x10 to 0x11),

The PS High Threshold (**PS_THRES_H**, register 0x12 to 0x13).

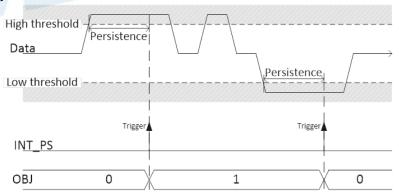
The PS Interrupt Mode (**PS_INT_MODE**, register 0x01, bit7).

PS_INT_MODE set to one: Zone Mode


INT_PS triggered condition:

- 1. Rule of active interrupt: PS_DATA > PS_THRES_H or PS_DATA < PS_THRES_L
- If <u>PS_DATA</u> meets the rule, the <u>counter (OUT_CONT)</u> increases one and another counter (IN_CONT) set to zero.
 - If <u>PS_DATA</u> fails in the rule, the counter (IN_CONT) increases one and clear the value of OUT_CONT.
- When the counter value of OUT_CONT equal to PRS_PS, the OBJ flag will set to zero, INT_PS will be triggered, and clear OUT_CONT counter.

When the **IN_CONT** counter value reaches **PRS_PS**, the counter will be cleared and **OBJ** flag will set to one.


4. If <u>PRS_PS</u> is set to zero, <u>the threshold</u> setting will be ignored and <u>DATA</u> will meets the active interrupt rule forcibly

PS_INT_MODE set to zero: Hysteresis Interrupt mode:

INT_PS triggered condition:

- 1. Rule of active interrupt:
 - i. When **OBJ** is zero, **PS_DATA**>**PS_THRES_H.**
 - ii. When OBJ is one, PS DATA<PS THRES L.
- 2. If **PS_DATA** meets the rule, the interrupt **counter** increases one.
 - If **PS_DATA** fails in the rule, the interrupt counter will be cleared.
- 3. When the counter value equal to **PRS_PS**, the **OBJ** flag will be inverted, **INT_PS** will be triggered, and clear interrupt counter.
- 4. If **PRS PS** is set to zero, **the threshold** setting will be ignored and **DATA** will meets the active interrupt rule forcibly.

WAIT TIME

0x03		WAIT_TIME, waiting time (Default = 0x00)								
BIT	7	7 6 5 4 3 2 1 0								
R/W		WTIME								

WTIME: This register controls the time unit of waiting state which is inserted between any two measurements. It is 5ms per time unit.

0x00: 1 time unit. 0x01: 2 time units

0xFF: 256 time units

ALS GAIN

0x04		ALS_GAIN, ALS analog gain (Default = 0x00)								
BIT	7	6	5	4	3	2	1	0		
R/W	0	0	0	0	0		PGA_ALS			

PGA_ALS: ALS sensing gain.

0x0: x1 (default)

0x1: x4 0x2: x8 0x3: x32 0x4: x96

0x5, 0x6, 0x7: NA

ALS_TIME

0x05		ALS_TIME, ALS integrated time (Default = 0x00)								
BIT	7	7 6 5 4 3 2 1 0								
R/W	·	ALSCONV								

<u>ALSCONV</u>: This register controls the integrated time of AD converter at ALS mode (T_{ALS}), and the resolution of output data (CH0_DATA, CH1_DATA).

0x00: The maximum count of output data is 1023, T_{ALS} = 5.513ms (default)

0x01: The maximum count of <u>output data is</u> 2047, $T_{ALS} = 8.138ms$

.....

0x3F: The maximum count of output data is 65535, T_{ALS} = 170.888ms

0xff: The maximum count of **output data is** 65535, T_{ALS} = 674.888ms

The maximum count of <u>output data is</u> minimum of $[1024 \times (ATIME + 1) - 1, 65535]$.

The conversion time of ALS function (T_{ALS}) is decided by **ALSCONV**.

 T_{ALS} =2.888 + 2.625 x (<u>ALSCONV</u> + 1) (ms)

LED CTRL

0x06		LED_CTRL, LED control(Default = 0x00)								
BIT	7	7 6 5 4 3 2 1 0								
R/W	IRDR	_SEL	ITW_PS							

IRDR_SEL: It configures the peak current of the internal LED driver.

0x0:50 mA (default)

0x1: 100 mA 0x2: 150 mA 0x3: 200 mA

<u>ITW_PS</u>: It controls the LED pulse width in PS function mode. Pulse width is 13.675us per unit.

0x00: 1T, 13.675 us (default).

0x01: 2T, 27.35 us.

0x3F: 64T, 875.213 us.

PS_GAIN

0x07		PS_GAIN, PS analog gain (Default = 0x00)								
BIT	7	6	5	4	3	2	1	0		
R/W	0	0	0	0	0	0	PGA	_PS		

PGA_PS: PS sensing gain.

0x0: x1 (default)

0x1: x2 0x2: x4

0x3: x8

PS PULSE

0x08		PS_PULSE, PS pulse count control(Default = 0x00)								
BIT	7	7 6 5 4 3 2 1 0								
R/W		ITC_PS								

ITC PS: It controls the number of LED pulse in PS function mode.

0x00 : 1 pulse 0x01 : 2 pulses 0x02 : 3 pulses

0xFF: 256 pulses

PS_TIME

0x09		PS_TIME, PS integrated time (Default = 0x00)									
BIT	7	6	5	4	3	2	1	0			
R/W	0	0 0 0 0 PSCONV									

PSCONV: This register controls the integrated time of AD converter at PS mode (T_{PS}), and the resolution of output data (PS_DATA, IR_DATA).

0x0: The maximum count of output data is 255, 1 time unit (default).

0x1: The maximum count of output data is 511, 2 time units.

......

0xf: The maximum count of output data is 4095, 16 time units.

The maximum count of output data is (256 x time unit) -1.

The conversion time of PS function (T_{PS}) is decided by **ITW_PS**, **ITC_PS**, and **PSCONV**. $T_{PS} = [3.051 + [2 \times (ITC_{PS} + 1) + 1] \times [0.01 + 0.01368 \times (ITW_{PS} + 1)] + 0.51 \times (PSCONV + 1)]*16 (ms)$

The total conversion time (T_{TOTAL}) of device is decided by T_{ALS}, T_{PS}, T_{wait}.

 $T_{TOTAL} = T_{ALS} + T_{PS} + T_{wait} (ms)$

PERSISTENCE

0x0B	PERSISTENCE, ALS, and PS persistence setting (Default = 0x11)								
BIT	7	6	5	4	3	2	1	0	
R/W		PRS_PS PRS_ALS							

<u>PRS_ALS</u>: This register sets the numbers of similar consecutive ALS interrupt events before the interrupt pin is triggered.

0x0: Every ALS conversion is done.

0x1: 1 ALS interrupt event is asserted. (default)

.....

0xf: 15 consecutive ALS interrupt events are asserted.

PRS_PS: This register sets the numbers of similar consecutive PS interrupt events before the interrupt pin is triggered.

0x0: Every PS conversion is done.

0x1: 1 PS interrupt event is asserted. (default)

.....

0xf: 15 consecutive PS interrupt events are asserted.

ALS_THRES_L

0x0C 0x0D	ALS_THRES_L, ALS low interrupt threshold (Default = 0x0000)									
BIT	7	7 6 5 4 3 2 1 0								
R/W		ALS_THRE_LL								
R/W	ALS_THRE_LH									

This register sets the lower threshold value of ALS interrupt. The interrupt algorithm compares the selected ALS data and ALS threshold value.

<u>ALS_THRE_LL</u>: ALS lower interrupt threshold value, LSB. (Reg. 0x0C)
<u>ALS_THRE_LH</u>: ALS lower interrupt threshold value, MSB. (Reg. 0x0D)

ALS_THRES_H

0x0E 0x0F	ALS_THRES_H, ALS high interrupt threshold (Default = 0xFFFF)											
BIT	7	7 6 5 4 3 2 1 0										
R/W	ALS_THRE_HL											
R/W		ALS_THRE_HH										

This register sets the high threshold value of ALS interrupt. The interrupt algorithm compares the selected ALS data and ALS threshold value.

ALS THRE HL: ALS high interrupt threshold value, LSB. (Reg. 0x0E)
ALS THRE HH: ALS high interrupt threshold value, MSB. (Reg. 0x0F)

PS_THRES_L

0x10 0x11	PS_THRES_L, PS low interrupt threshold (Default = 0x0000)												
BIT	7	7 6 5 4 3 2 1 0											
R/W		PS_THRE_LL											
R/W				PS_TH	RE_LH								

This register sets the lower threshold value of PS interrupt. The interrupt algorithm compares the selected PS data and PS threshold value.

PS THRE LL : PS lower interrupt threshold value, LSB. (Reg. 0x10)PS THRE LH : PS lower interrupt threshold value, MSB. (Reg. 0x11)

PS_THRES_H

0x12 0x13	PS_THRES_H, PS high interrupt threshold (Default = 0xFFFF)												
BIT	7	7 6 5 4 3 2 1 0											
R/W	PS_THRE_HL												
R/W				PS_THI	RE_HH								

This register sets the high threshold value of PS interrupt. The interrupt algorithm compares the selected PS data and PS threshold value.

PS_THRE_HL: PS high interrupt threshold value, LSB. (Reg. 0x12) **PS_THRE_HH**: PS high interrupt threshold value, MSB. (Reg. 0x13)

PS_OFFSET

0x14 0x15	PS_OFFSET, PS offset level (Default = 0x0000)												
BIT	7	7 6 5 4 3 2 1 0											
R/W	PS_OFFSET_L												
R/W		PS_OFFSET_H											

This register used to calibrate the device's cross talk. The **PS_DATA** should be closed to zero with no object. The PS_OFFSE is subtracted from the measured data before it output to **PS_DATA**.

PS OFFSET L : PS high interrupt threshold value, LSB. (Reg. 0x14)
 PS OFFSET H : PS high interrupt threshold value, MSB. (Reg. 0x15)

INT_SOURCE

0x16	INT_SOURCE, ALS interrupt source (Default = 0x00)										
BIT	7	7 6 5 4 3 2 1 0									
R/W	0	0	0	0	0	0	0	INT_SRC			

INT SRC: This register sets to select the ALS data for the ALS Interrupt algorithm.

0x0: Select CH0_DATA. 0x1: Select CH1_DATA.

ERROR FLAG

0x17	ERROR_FLAG, Error flag status										
BIT	7	7 6 5 4 3 2 1 0									
R/W	0	0	0	0	ERR_IR	0	ERR_CH1	ERR_CH0			

This register indicates the ALS / IR data status. If the ALS / IR data is outside of measurable range, the corresponding error flag (ERR_CH0, ERR_CH1, ERR_IR) will set to one. That also means the data is invalid.

PS_DATA

0x18 0x19	PS_DATA, PS output data.											
BIT	7	7 6 5 4 3 2 1 0										
R/W		PS_DATA_L										
R/W				PS_DA	TA_H							

The PS conversion result is written into PS_DATA.

For insuring the data in the register comes the same measurement, the high byte data will be latched when the low byte data has been accessed until the high byte data has be read.

IR DATA

0x1A 0x1B	IR_DATA, IR output data.										
BIT	7	7 6 5 4 3 2 1 0									
R/W	IR_DATA_L										
R/W				IR_DA	TA_H						

The IR sensor result is written into IR_DATA when PS conversion is done.

For insuring the data in the register comes the same measurement, the high byte data will be latched when the low byte data has been accessed until the high byte data has be read.

CH0_DATA

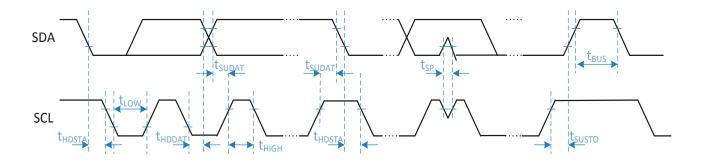
0x1C 0x1D	CH0_DATA, Channel 0 output data.								
BIT	7	6 5	4	3	2	1	0		
R/W			CH0_DA	ATA_L					
R/W			CH0_DA	ATA_H					

The channel 0 result of ALS sensor is written into CH0_DATA when ALS conversion is done.

For insuring the data in the register comes the same measurement, the high byte data will be latched when the low byte data has been accessed until the high byte data has be read.

CH1_DATA

0x1E	CH1_DATA, Channel 1 output data.											
0x1F	CHT_DATA, Channer Fourput data.											
BIT	7	7 6 5 4 3 2 1 0										
R/W	CH1_DATA_L											
R/W				CH1_D	ATA_H							


The channel 1 result of ALS sensor is written into CH1_DATA when ALS conversion is done.

For insuring the data in the register comes the same measurement, the high byte data will be latched when the low byte data has been accessed until the high byte data has be read.

I²C Interface Timing Characteristics

This section will describe the protocol of the I^2C bus. For more details and timing diagrams please refer to the I^2C specification.

Parameter (*)	Symbol	I ² C Stand	dard Mode	I ² C Fas	t Mode	Unit
Parameter (*)	Symbol	Min.	Max.	Min.	Max.	Offic
SCL clock frequency	f _{SCL}	0	100	0	400	kHz
Bus free time between STOP condition and START condition	t _{BUS}	4.7		1.3		μs
LOW period of the SCL clock	t _{LOW}	4.7		1.3		μs
HIGH period of the SCL clock	t _{HIGH}	4		0.6		μs
Hold time (repeated) START condition	t hdsta	4		0.6		μs
Set-up time (repeated) START condition	tsusta	4.7		0.6		μs
Set-up time for STOP condition	tsusто	4		0.6		μs
Data hold time	t _{HDDAT}	0	3.45	0	0.9	μs
Data set-up time	t _{SUDAT}	250		100		μs
Rise time of both SDA and SCL signals	t _(r)		300		300	μs
Fall time of both SDA and SCL signals	t _(f)		1000		300	μs

^(*) All specifications are at $V_{Bus} = 3.3V$, $T_{ope} = 25$ °C, unless otherwise noted. Specified by design and characterization; not production tested.

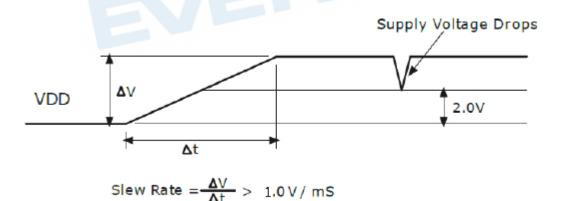
Lux Calculating

User could calculate lux value by using the following equation (for white LED)

- If CHO/CH1 < 0.30, Lux= (CHO/ PGA_ALS)*[64/(ALSCONV +1)]*K1
- If CH0/CH1 >0.60, Lux= (CH0/ PGA_ALS)*[64/(ALSCONV +1)]*K2

Ex:

Register setting: ALSCONV = 0x3F, PGA_ALS = 0x03, CH0/CH1=0.83


Lux=(CH0/32)*[64/(63+1)]*0.94

Note:

- 1. Recommend calibrate value : K1 = 0.52, K2=0.94
- 2. The values for **K1** and **K2** shown above are only valid for the sensor component. If the sensor is placed behind an optical system (e.g. lens, cover panel etc.) the values above might not be suitable for a lux calculation. In such case the values for **K1** and **K2** must be determined in the application by using a luxmeter and the sensor readings.

Supply Voltage Drops

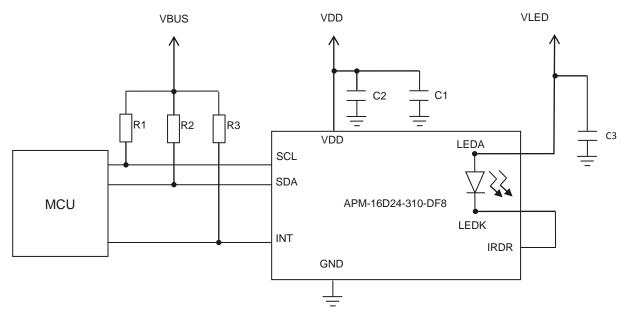
Upon power-up, please ensure the slew rate of VDD greater than 1.0 V/mS. After power-up, the supply voltage shall NOT drop below 2.0V. Once it happens, please switch off the power, wait more than 1 second, and then power on the device again.

Note:

I²CBus Clear

In the unlikely event where the clock (SCL) is stuck LOW, the preferential procedure is to reset the bus using the HW reset signal if your I²C devices have HW reset inputs. If the I²C devices do not have HW reset inputs, cycle power to the devices to activate the mandatory Internal Power-On Reset (POR) circuit.

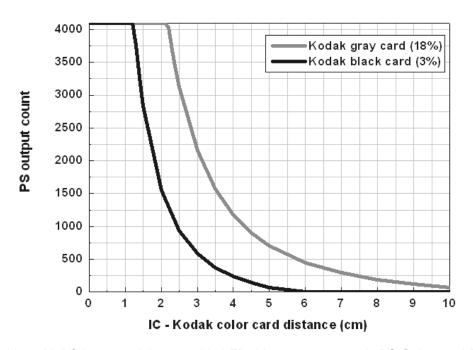
If the data line (SDA) is stuck LOW, the master should send nine clock pulses. The device that held the bus LOW should release it sometime within those nine clocks.


I²C General Call Software Reset

Following a General Call, (0000 0000), sending 0000 0110 (06h) as the second byte causes software reset. This feature is optional and not all devices will respond to this command. On receiving this 2-byte sequence, all devices designed to respond to the general call address will reset and take in the programmable part of their address.

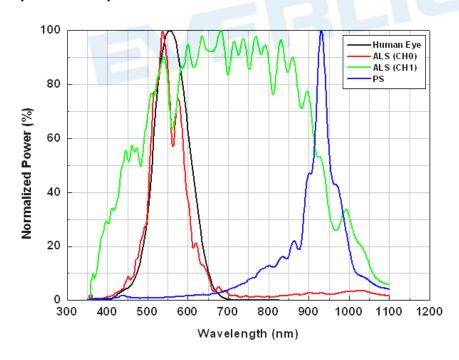
Precautions have to be taken to ensure that a device is not pulling down the SDA or SCL line after applying the supply voltage, since these low levels would block the bus.

Typical Application Circuit

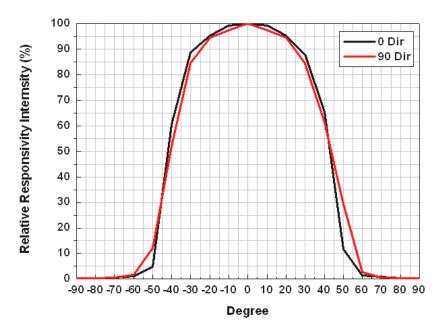

The capacitors (C1, C2) are required for sensor power supply. The capacitors should be placed as close as possible to the device. The high frequency AC noises can be shunted to the ground by the capacitors. The transient current caused by digital circuit switching also can be handled by the capacitors. A typical value $0.1 / 1 \mu F$ can be used.

The capacitors (C3) is required for LED power supply. A typical value 2.2µF is used.

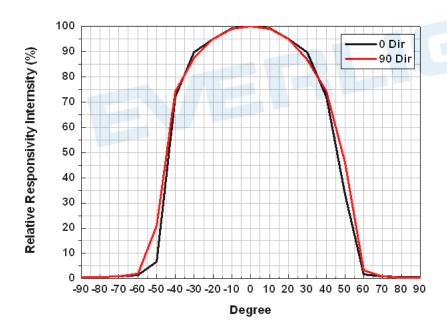
The pull-up resistors (R1, R2) are required for I²C communication. At fast speed mode (400kHz/s) and VBUS = 1.8V, $1.5k\Omega$ resistors can be used. The pull-up resistor (R3) is also required for the interrupt, a typical value between $10 k\Omega$ and $100 k\Omega$ can be used.



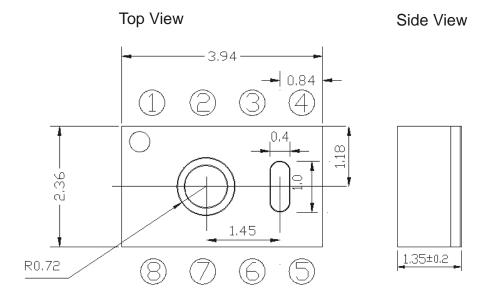
PS output data


V_{DD}=3V, PS integrated time =12 bit, LED drive current= 50mA, PS Gain= x1, LED pulse width=40T, LED pulse count=5

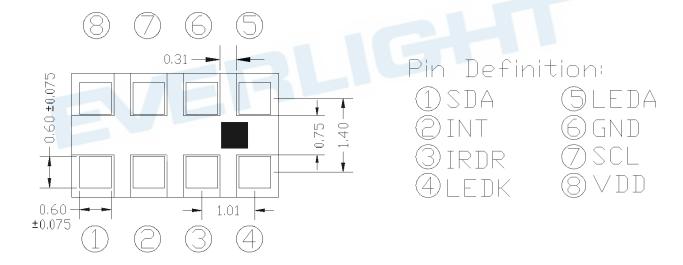
Spectral Response

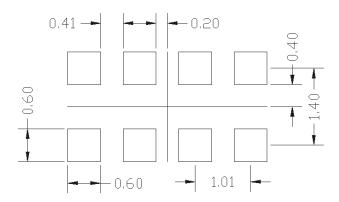


ALS (CH0) view angle



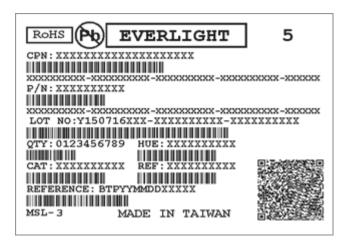
ALS (CH1) view angle




Package Dimensions and recommended solder pad layout

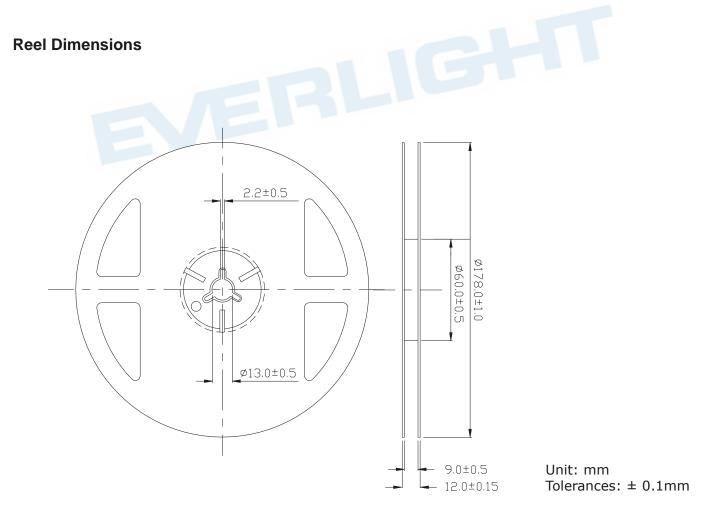
Bottom View

Recommended Soldering Pad

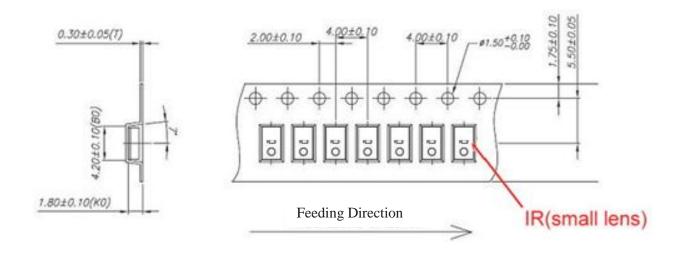


Unit: mm

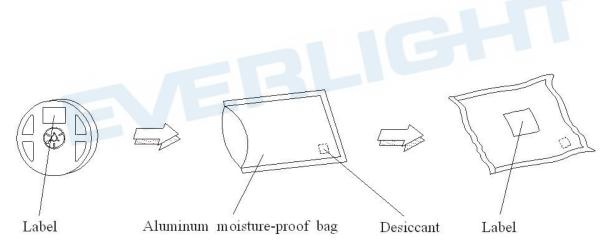
Tolerances: ± 0.2mm


Label Explanation

- CPN: Customer's Product Number
- P/N: Product Number
- · QTY: Packing Quantity
- · CAT: Luminous Intensity Rank
- · HUE: Dom. Wavelength Rank
- REF: Forward Voltage Rank
- · LOT No: Lot Number

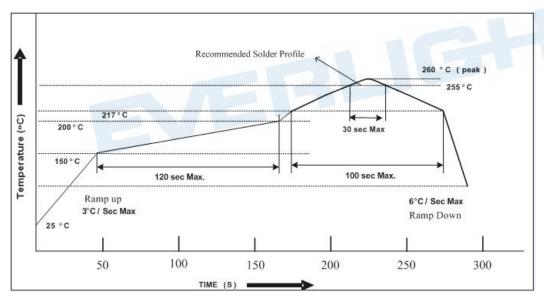

Packing Quantity Specification

2000 PCS/ 1 Reel



Tape Dimensions

Moisture Resistant Packing Process



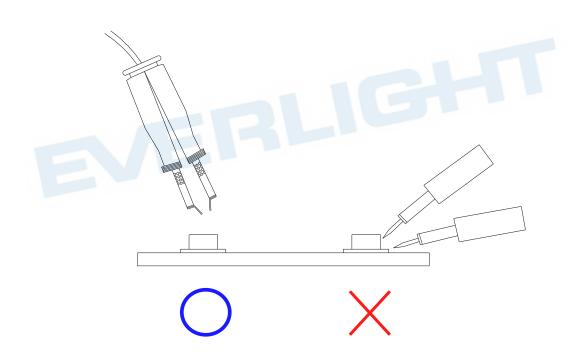
Recommended method of storage

- 1. Do not open moisture proof bag before devices are ready to use.
- 2. Shelf life in sealed bag from the bag seal date: 18 months at 10°C~30°C and < 90% RH.
- 3. After opening the package, the devices must be stored at 10°C~30°C and ≤ 60%RH, and used within 168 hours (floor life).
- 4. If the moisture absorbent material (desiccant material) has faded or unopened bag has exceeded the shelf life or devices (out of bag) have exceeded the floor life, baking treatment is required.
- 5. If baking is required, refer to IPC/JEDEC J-STD-033 for bake procedure or recommend the following conditions:
 - 192 hours at 40°C +5/-0°C and < 5 % RH (reeled/tubed/loose units) or
 - 96 hours at 60°C ± 5°C and < 5 % RH (reeled/tubed/loose units) or
 - 24 hours at 125°C ± 5°C, not suitable for reel or tubes.

Recommended Solder Profile

Notice:

- 1. Reflow soldering should not be done more than two times.
- 2. When soldering, do not put stress on the devices during heating.
- 3. After soldering, do not warp the circuit board.
- 4. Reference: IPC/JEDEC J-STD-020D



Soldering Iron

Each terminal is to go to the tip of soldering iron temperature less than 350°C for 3 seconds within once in less than the soldering iron capacity 25W. Leave two seconds and more intervals, and do soldering of each terminal. Be careful because the damage of the product is often started at the time of the hand solder.

Repairing

Repair should not be done after the device have been soldered. When repairing is unavoidable, a double-head soldering iron should be used (as below figure). It should be confirmed beforehand whether the characteristics of the device will or will not be damaged by repairing.

DISCLAIMER

- 1. EVERLIGHT reserves the right(s) on the adjustment of product materials for the specification.
- 2. The product meets EVERLIGHT published specification for a period of twelve (12) months from date of shipment.
- 3. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 4. When using this product, please observe the absolute maximum ratings and the instructions for using outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from the use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 5. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without obtaining EVERLIGHT's prior consent.
- 6. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.

