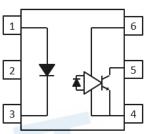


DATASHEET


6 PIN SDIP HIGH SPEED 10MBit/s LOGIC GATE **PHOTOCOUPLER ELS611-G series**

Features

- · Compliance Halogen Free. (Br <900 ppm, Cl <900 ppm, Br+Cl < 1500 ppm).
- Pb free and RoHS compliant
- Compliance with EU REACH.
- · High isolation voltage between input and output (Viso=5000 Vrms)
- UL and cUL approved (E214129)
- VDE approved (No.254769)
- NEMKO approved
- FIMKO approved
- SEMKO approved
- DEMKO approved
- CQC approved(No.16001145144)

Schematic

0.1µF bypass capacitor must be connected between pins 6 and 4 *3

Pin Configuration

- 1: Anode
- 2: No Connection
- 3: Cathode
- 4: GND
- 5: Vout
- 6: Vcc

Description

The ELS611(CLW)-G serie devices are consists of an infrared emitting diode optically coupled to a high speed integrated photo detector logic gate with a storable output. The devices in a 6-pin small DIP package.

Applications

- Ground loop elimination
- LSTTL to TTL, LSTTL or 5 volt CMOS
- · Line receiver, data transmission
- Data multiplexing
- Switching power supplies
- Pulse transformer replacement
- Computer peripheral interface

Truth Table (Positive Logic)

Input	Output
Н	L
L	Н

Absolute Maximum Ratings (Ta=25℃)

	Parameter	Symbol	Rating	Unit
	Forward current	I _F	20	mA
Input	Reverse voltage	V_{R}	5	V
	Power dissipation	P _D	40	mW
	Power dissipation	Pc	85	mW
	Output current	lo	50	mA
Output	Output voltage	Vo	7.0	V
	Supply voltage	Vcc	7.0	V
Output Power Dissipation		Po	100	mW
Isolation voltage *1		V _{ISO}	5000	V rms
Operating temperature		T _{OPR}	-40 ~ +85	°C
Storage temperature		T _{STG}	-55 ~ +125	°C
Soldering	temperature *2	T _{SOL}	T _{SOL} 260	

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2, 3 & 4 are shorted together, and pins 5, 6, 7 & 8 are shorted together.

^{*2} For 10 seconds.

Electrical Characteristics

Input

Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition
Forward voltage	V_{F}	-	1.45	1.8	V	I _F = 10mA
Reverse Current	I _R	-	-	10	μΑ	V _R = 5V
Input capacitance	C _{IN}	-	60	-	pF	V _F =0, f=1MHz

Output

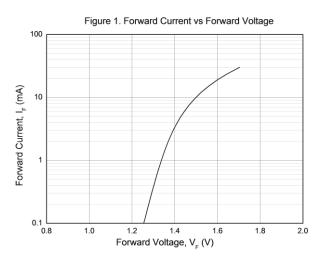
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High Level supply current	Іссн	-	7	13	mA	I _F =0mA, V _{CC} =5.5V
Low Level supply current	Iccl	-	9	15	mA	I _F =10mA, V _{CC} =5.5V

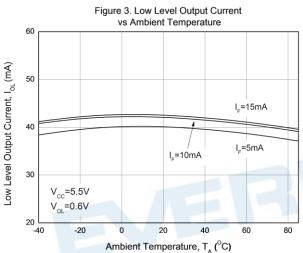
Transfer Characteristics

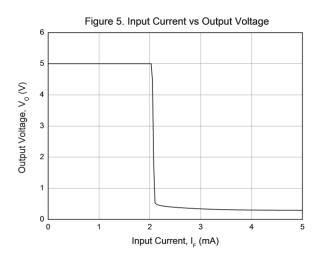
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
High Level Output Current	Іон		1	100	uA	V _{CC} =5.5V, V _O =5.5V, I _F =250µA
Low Level Output Current	Vol		0.4	0.6	V	$V_{CC} = 5.5V$, $I_{F}=5mA$, $I_{OL}=13mA$
Input Threshold Current	I _{FT}	-	-	5	mA	V _{CC} = 5.5V, V _O =0.6V, I _{OL} =13mA

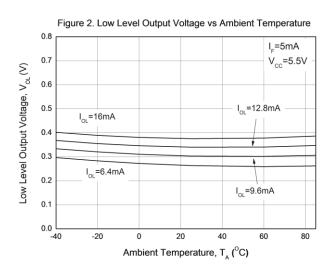
Switching Characteristics (Vcc=5V, IF=7.5mA unless specified otherwise)

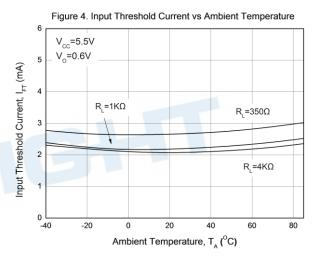
Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Propagation delay time to output High level	T_{PHL}	-	40	100	ns	$C_L = 15pF, R_L = 350\Omega,$
Propagation delay time to output Low level	T_PLH	-	50	100	ns	$C_L = 15pF, R_L = 350\Omega,$
Pulse width distortion	T _{PHL} –T _{PLH}	-	10	50	ns	$C_L = 15pF, R_L = 350\Omega$
Output rise time	tr	-	50	-	ns	$C_L = 15pF, R_L = 350\Omega$
Output fall time	tf	-	10	-	ns	C_L = 15pF, R_L =350 Ω

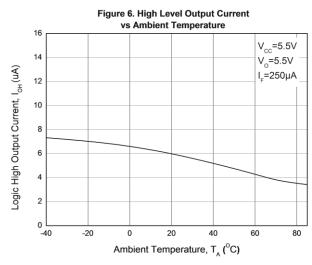

Switching Characteristics

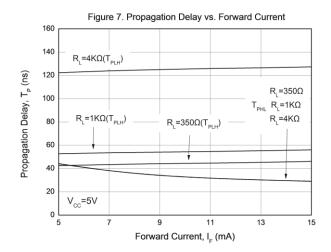

Parameter	Symbol	Min	Тур.	Max.	Unit	Condition
Common Mode Transient Immunity at Logic High *4	СМн	5		-	KV/µS	$I_F = 0mA$, $V_{OH} = 2.0V$, $R_L = 350\Omega$, $T_A = 25^{\circ}C$ $V_{CM} = 1000Vp-p$
Common Mode Transient Immunity at Logic Low *5	CM_L	5	-	-	KV/μS	$I_F = 7.5 \text{mA}$, $V_{OL} = 0.8 \text{V}$, $R_L = 350 \Omega$, $T_A = 25 ^{\circ} \text{C}$ $V_{CM} = 1000 \text{Vp-p}$

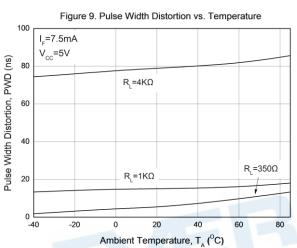


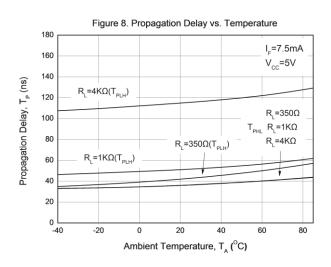



Typical Electro-Optical Characteristics Curves









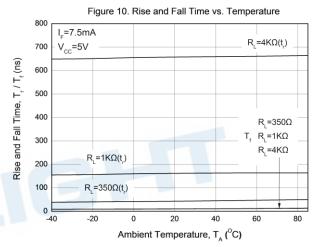


Figure 11. Switching Time Test Circuit & Waveform

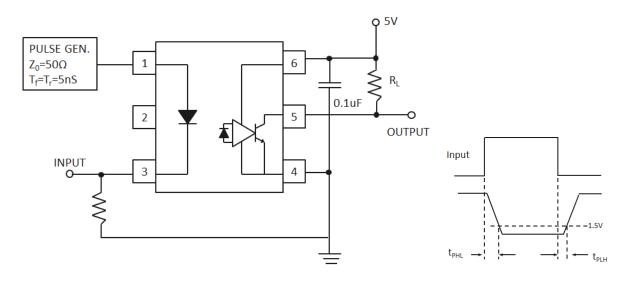
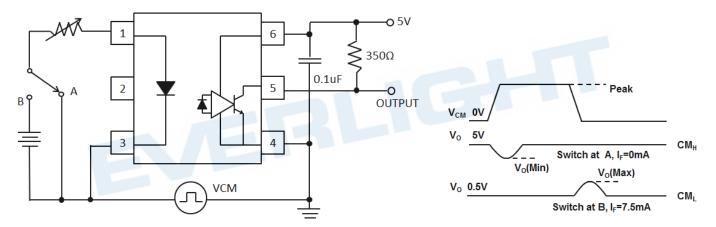



Figure 12. Transient Immunity Test Circuit & Waveform

Note

- *3 The V_{CC} supply must be bypassed by a 0.1µF capacitor or larger. This can be either a ceramic or solid tantalum capacitor with good high frequency characteristic and should be connected as close as possible to the package VCC and GND pins
- *4 CM_H- The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the HIGH state (i.e., $V_{OUT} > 2.0V$).
- *5 CML- The maximum tolerable rate of rise of the common mode voltage to ensure the output will remain in the LOW output state (i.e., $V_{OUT} < 0.8V$).

Order Information

Part Number

ELS611X(Y)-VG

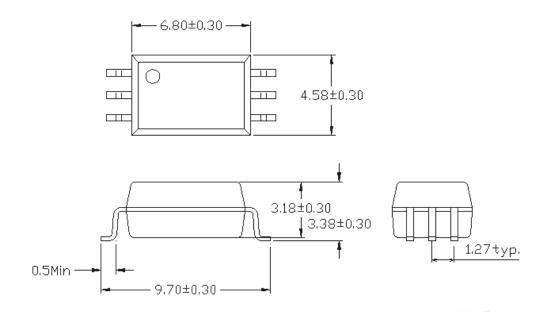
Note

EL = denotes EVERLIGHT

S611 = part no. X = lead type(P)

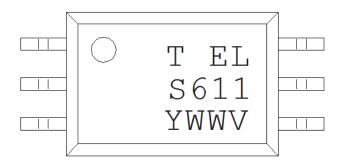
Y = Tape and reel option (TA, TB)

V = VDE (optional) G = Halogens free


Option	Description	Packing quantity
P(TA)	Surface mount lead form + TA tape & reel option	1000 units per reel
P(TB)	Surface mount lead form + TB tape & reel option	1000 units per reel


Package Dimension (Dimensions in mm)

P Type:


Recommended pad layout for surface mount leadform

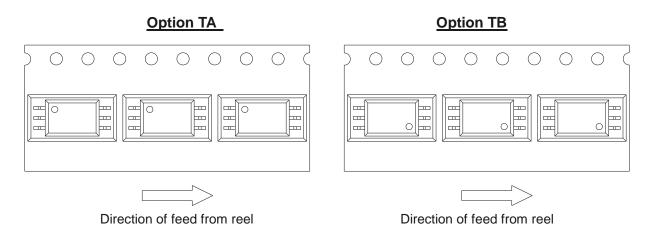
For P Type:

Device Marking

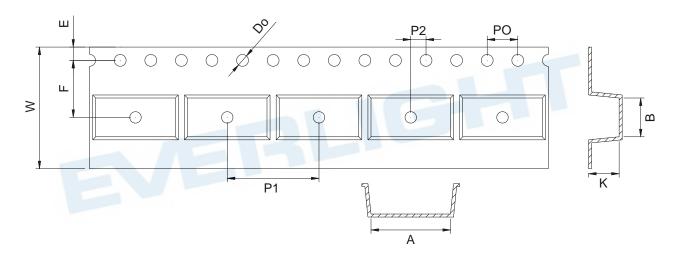
Notes

EL

Т denotes Factory

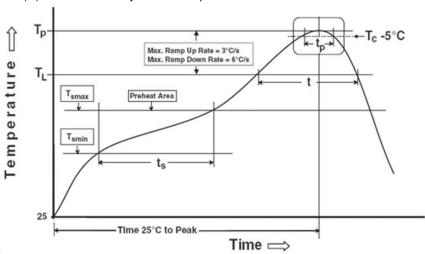

T: made in Taiwan denotes EVERLIGHT denotes Device Number

S611 Υ denotes 1 digit Year code WW denotes 2 digit Week code denotes VDE (optional)



Tape & Reel Packing Specifications

Tape dimension


Dimension No.	A	В	Do	E	F	t
Dimension(mm) P	10.4 ± 0.1	5.1 ± 0.1	1.55 ± 0.1	1.75 ± 0.1	7.5 ± 0.1	0.4 ± 0.1
Dimension No.	РО	P1	P2	w	К	
Dimension(mm)	4.0 ± 0.1	12.0 ± 0.1	2.0 ± 0.1	16.0 ± 0.3	4.0 ± 0.1	

Precautions for Use

1. Soldering Condition

1.1 (A) Maximum Body Case Temperature Profile for evaluation of Reflow Profile

Note: Reference: IPC/JEDEC J-STD-020D

Preheat

Temperature min (T_{smin}) 150 °C

Temperature max (T_{smax}) 200°C

Time $(T_{smin} \text{ to } T_{smax})$ (t_s) 60-120 seconds

Average ramp-up rate $(T_{smax} \text{ to } T_p)$ 3 °C/second max

Other

Liquidus Temperature (T_L)

217 °C

Time above Liquidus Temperature (t _L)

60-100 sec

Peak Temperature (T_P)

260°C

Time within 5 °C of Actual Peak Temperature: T_P - 5°C

Ramp- Down Rate from Peak Temperature

6°C /second max.

Time 25°C to peak temperature

8 minutes max.

Reflow times

3 times

DISCLAIMER

- 1. Above specification may be changed without notice. EVERLIGHT will reserve authority on material change for above specification.
- 2. The graphs shown in this datasheet are representing typical data only and do not show guaranteed values.
- 3. When using this product, please observe the absolute maximum ratings and the instructions for use outlined in these specification sheets. EVERLIGHT assumes no responsibility for any damage resulting from use of the product which does not comply with the absolute maximum ratings and the instructions included in these specification sheets.
- 4. These specification sheets include materials protected under copyright of EVERLIGHT. Reproduction in any form is prohibited without the specific consent of EVERLIGHT.
- 5. This product is not intended to be used for military, aircraft, automotive, medical, life sustaining or life saving applications or any other application which can result in human injury or death. Please contact authorized Everlight sales agent for special application request.
- 6. Statements regarding the suitability of products for certain types of applications are based on Everlight's knowledge of typical requirements that are often placed on Everlight products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Everlight's terms and conditions of purchase, including but not limited to the warranty expressed therein.